Abstract

Pomeroy et al. (2006) proposed that temporal and spatial mismatches between eastern oyster filtration and phytoplankton abundance will preclude restored stocks of eastern oysters from reducing the severity of hypoxia in the deep channel of central Chesapeake Bay. We refute this con- tention by presenting arguments, data, and model results, overlooked by these authors. Our analysis indicates that oyster populations living on extensive reefs along the flanks of the mainstem Bay could substantially reduce summer phytoplankton growth and particulate organic carbon deposition to deep waters of the central channel. Because hypoxia in these deep waters is maintained through microbial decomposition of organic carbon generated by summer phytoplankton production, we conclude that reduced carbon fluxes to the deep channel associated with greatly increased oyster grazing could reduce the severity of hypoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call