Abstract
We compare Bi2Te3 powders prepared by conventional ball milling to powders milled in supercritical carbon dioxide (scCO2). We demonstrate that scCO2 milling overcomes size-reduction limitations reported for conventional milling. XRD and TEM reveal nanograins with smaller average sizes (< 10 nm) and narrower grain size distributions in the scCO2 milled case. scCO2 milling also preserves the crystallinity and shows less oxidation than conventional milling. This is the first report of Bi2Te3 with a sub-10 nm grain size whilst conserving high quality crystallinity, made using a top-down approach. Our study offers a route for developing unprecedentedly fine bulk nanostructured Bi2Te3-based thermoelectric materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.