Abstract
Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed thin-film transistors due to their excellent electrical performance and intrinsic printability with solution-based deposition. However, limited by resolution and registration accuracy of current printing techniques, previously reported fully printed nanotube transistors had rather long channel lengths (>20 μm) and consequently low current-drive capabilities (<0.2 μA/μm). Here we report fully inkjet printed nanotube transistors with dramatically enhanced on-state current density of ∼4.5 μA/μm by downscaling the devices to a sub-micron channel length with top-contact self-aligned printing and employing high-capacitance ion gel as the gate dielectric. Also, the printed transistors exhibited a high on/off ratio of ∼105, low-voltage operation, and good mobility of ∼15.03 cm2 V-1s-1. These advantageous features of our printed transistors are very promising for future high-definition printed displays and sensing systems, low-power consumer electronics, and large-scale integration of printed electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.