Abstract
At the early stages of the drug discovery, molecule toxicity prediction is crucial to excluding drug candidates that are likely to fail in clinical trials. In this paper, we presented a novel molecular representation method and developed a corresponding deep learning-based framework called TOP (the abbreviation of TOxicity Prediction). TOP integrates specifically designed data preprocessing methods, an RNN based on bidirectional gated recurrent unit (BiGRU), and fully connected neural networks for end-to-end molecular representation learning and chemical toxicity prediction. TOP can automatically learn a mixed molecular representation from not only SMILES contextual information that describes the molecule structure, but also physiochemical properties. Therefore, TOP can overcome the drawbacks of existing methods that use either of them, thus greatly promotes toxicity prediction accuracy. We conducted extensive experiments over 14 classic toxicity prediction tasks on three different benchmark datasets, including balanced and imbalanced ones. The results show that, with the help of the novel molecular representation method, TOP significantly outperforms not only three baseline machine learning methods, but also five state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.