Abstract

Bone grafting has increasingly been used in surgical procedures for enhanced bone augmentation. Tooth-derived graft material has received considerable attention due to its chemical composition and autogenous source that can improve bone tissue healing. The main aim of this study was to provide a short and comprehensive review on the chemical composition, morphological aspects, and clinical outcomes of bone grafting using tooth-derived matrix granules. Dentin tissue has a chemical composition similar to that on bone tissues regarding the presence of hydroxyapatite, type I collagen, and different growth factors. Dentin-matrix granules are often processed at well-controlled size ranging from approximately 300 up to 1300 µm, while maintaining porosity and organic content. In addition, a dense collagen fiber network is still present after the milling and chemical treatment of dentin granules. Thus, dentin-matrix granules can improve the bone healing process considering their chemical composition, porous structure, and adequate size. However, further in vivo and in vitro studies should be performed taking into consideration different demineralization procedures, remnant organic content, porosity, and granule size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.