Abstract
Learner-controlled explorations in the physics laboratory with easy-to-use real-time measurement tools give students immediate feed-back by presenting data graphically in a manner that can be understood. Using Microcomputer-Based Laboratory (MBL) sensors and software students can simultaneously measure and graph such physical quantities as position, velocity, acceleration, force, temperature, light intensity, sound pressure, current and potential difference. Using these MBL tools provides a mechanism for more easily altering physics pedagogy to include methods found to be effective by educational research. The ease of data collection and presentation encourage even badly prepared students to become active participants in a scientific process which often leads them to ask and answer their own questions. The general nature of the tools enable exploration to begin with the students’ direct experience of the familiar physical world rather than with specialized laboratory equipment. The real-time graphical display of actual physical measurements of dynamic systems directly couples the symbolic representation with the actual physical phenomena. Such MBL tools and carefully designed curricula based on educational research have been used to teach physics concepts to a wide range of students in universities and high schools. Data show substantial and persistent learning of basic physical concepts, not often learned in lectures, by students who use MBL tools with carefully designed auricular materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.