Abstract
The use of reduced precision to improve performance metrics such as computation latency and power consumption is a common practice in the embedded systems field. This practice is emerging as a new trend in High Performance Computing (HPC), especially when new error-tolerant applications are considered. However, standard compiler frameworks do not support automated precision customization, and manual tuning and code transformation is the approach usually adopted in most domains. In recent years, research have been studying ways to improve the automation of this process. This article surveys this body of work, identifying the critical steps of this process, the most advanced tools available, and the open challenges in this research area. We conclude that, while several mature tools exist, there is still a gap to close, especially for tools based on static analysis rather than profiling, as well as for integration within mainstream, industry-strength compiler frameworks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.