Abstract

BackgroundEntomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed.MethodsThe efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510) (2 × 1010 conidia m-2) applied on mud panels (simulating walls of traditional Tanzanian houses), black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily.ResultsAll fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p < 0.001). Mosquitoes exposed to B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14), and a higher risk than those exposed to treated polyester netting (p < 0.001). Residual activity of fungi declined over time; however, conidia remained pathogenic at 28 d post application, and were able to infect and kill 73 - 82% of mosquitoes within 14 d.ConclusionBoth fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field.

Highlights

  • Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS)

  • The daily risk of dying for mosquitoes exposed to either M. anisopliae (Hazard Ratio [HR] = 2.72 [95% CI = 2.58 - 2.86], p < 0.001) or B. bassiana (HR = 2.23 [95% CI = 2.12 2.34], p < 0.001) was more than two-fold higher than that of control mosquitoes (Table 2)

  • For M. anisopliae, the risk of death for mosquitoes exposed to conidia on mud panels was higher than that for mosquitoes exposed to conidia on either polyester netting (HR = 1.17 [95% CI = 1.1 - 1.24], p < 0.001) or cotton cloth (HR = 1.11 [95% CI = 1.05 - 1.18], p < 0.001) regardless of the time at which mosquitoes were exposed post conidia application (Table 2)

Read more

Summary

Introduction

Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed. Vector control programmes will need to incorporate novel tools to complement the use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS). Both ITNs and IRS are highly effective against anthropophagic and endophilic species, but their efficacy is threatened by emergence of resistance to synthetic insecticides [1,2]. Resting mosquitoes could be targeted indoors on walls [7,17] or both indoors and outdoors using a point source decoy resting site, e.g. resting boxes, clay pots, or black cotton cloth attached to the roof or walls [6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call