Abstract

The aim of this work is to present the development of a hybrid Brain-Computer Interface (hBCI) which combines existing input devices with a BCI. Thereby, the BCI should be available if the user wishes to extend the types of inputs available to an assistive technology system, but the user can also choose not to use the BCI at all; the BCI is active in the background. The hBCI might decide on the one hand which input channel(s) offer the most reliable signal(s) and switch between input channels to improve information transfer rate, usability, or other factors, or on the other hand fuse various input channels. One major goal therefore is to bring the BCI technology to a level where it can be used in a maximum number of scenarios in a simple way. To achieve this, it is of great importance that the hBCI is able to operate reliably for long periods, recognizing and adapting to changes as it does so. This goal is only possible if many different subsystems in the hBCI can work together. Since one research institute alone cannot provide such different functionality, collaboration between institutes is necessary. To allow for such a collaboration, a new concept and common software framework is introduced. It consists of four interfaces connecting the classical BCI modules: signal acquisition, preprocessing, feature extraction, classification, and the application. But it provides also the concept of fusion and shared control. In a proof of concept, the functionality of the proposed system was demonstrated.

Highlights

  • Persons having severe motor disabilities for various reasons can use a wide range of assistive devices (ADs) for managing their daily needs as well as using them for communication and entertainment purposes

  • For individuals suffering from severe palsy caused by muscle dystrophy, amyotrophic lateral sclerosis (ALS), or brainstem stroke, such a Brain-Computer Interface (BCI) constitutes a possible way to communicate with the environment (Birbaumer et al, 1999; Nijboer et al, 2008; Kübler et al, 2009)

  • This work introduces a general framework to establish a so-called hybrid BCI including a set of interface definitions

Read more

Summary

Introduction

Persons having severe motor disabilities for various reasons can use a wide range of assistive devices (ADs) for managing their daily needs as well as using them for communication and entertainment purposes. The set of ADs ranges from simple switches connected to a remote controller to complex sensors (e.g., mouth mouse) attached to a computer and to eye tracking systems. All of these systems work very well after being adjusted individually for each person. A “brain-computer interface is a communication system that does not depend on the brain’s normal output pathways of peripheral nerves and muscles” (Wolpaw et al, 2000) It establishes a direct connection between the human brain and a computer (Wolpaw et al, 2002), providing an additional communication channel. BCIs can be used to control neuroprostheses in patients suffering from a high spinal cord injury (SCI), for example by using Functional Electrical Stimulation (FES) for grasp restoration (Müller-Putz et al, 2005)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.