Abstract

We report a toolbox for exploring the modular tuning of genetic circuits, which has been specifically optimized for widespread deployment in STEM environments through a combination of bacterial strain engineering and distributable hardware development. The transfer functions of 16 genetic switches, programmed to express a GFP reporter under the regulation of the (acyl-homoserine lactone) AHL-sensitive luxR transcriptional activator, can be parametrically tuned by adjusting high/low degrees of transcriptional, translational, and post-translational processing. Strains were optimized to facilitate daily large-scale preparation and reliable performance at room temperature in order to eliminate the need for temperature controlled apparatuses, which are both cost-limiting and space-constraining. The custom-designed, automated, and web-enabled fluorescence documentation system allows time-lapse imaging of AHL-induced GFP expression on bacterial plates with real-time remote data access, thereby requiring trainees to only be present for experimental setup. When coupled with mathematical models in agreement with empirical data, this toolbox expands the scalability and scope of reliable synthetic biology experiments for STEM training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.