Abstract

In order to ensure the reliability and stability of the manufacturing process, tool wear state should be realized real-time and accurate monitoring. This paper proposes a tool wear state recognize and predictive framework model based on Stacking Sparse De-noising Auto-Encoder (SSDAE), the Particle Swarm Optimization (PSO) and the Least Squares Support Vector Machine (LSSVM). The Stacking Sparse De-noising Auto-Encoder (SSDAE) technique is utilized to realize multi-feature signal dimension reduction with the aim of improving the prediction accuracy, which reduces the dependence on the prior knowledge of feature selection and greatly improves the modeling efficiency. PSO technique is helpful for adaptive optimization of kernel parameters, which greatly improved computing power and LSSVM model prediction accuracy. A dataset from a real machining process is utilized to verify the effectiveness of proposed model in improving the prediction accuracy. The experimental results show that a high correlation coefficient greater than 0.95 is used to extract feature vector from time domain, frequency domain and time-frequency domain three directions, and the proposed SSDAE-PSO-LSSVM model performs better than Partial Least Squares Regression (PLSR), Back Propagation Neural Network (BPNN) and Extreme Learning Machine (ELM) in terms of prediction accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.