Abstract
Accurate identification of the tool wear state during the machining process is of great significance to improve product quality and benefit. The wear states of the same tool type and machining material have similarities during the machining process. By mining the data value of the historical machining process and analyzing the similarity of the procedure, the subsequent machining process can be predicted with the help of transfer learning. Therefore, this study proposes a tool wear prediction scheme based on feature-based transfer learning to realize the accurate prediction of the tool wear state. The genetic algorithm (GA) is used to select a subset of sensor features that are highly correlated with tool wear. Then, the source domain and target domain are constructed on the basis of the selected sensor features of the historical tool and the new tool during the machining process, respectively. In addition, features in the life cycle of the new tool are completed by feature-based transfer learning. After feature transfer, the maximum mean square discrepancy (MMD) method is used to evaluate the similarity of features, and the optimal feature subset is selected according to the evaluation result. Finally, the particle swarm-optimized support vector machine (PSO-SVM) model is applied to predict the tool wear states during the new tool machining. The effectiveness of the proposed tool wear scheme is verified by the cutting force and wear data of the tool life cycle under three different milling parameter combinations. Results with high accuracy show the advantages of the feature-based transfer learning method for tool wear state prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.