Abstract

Intelligent real-time monitoring of tool wear is significant to ensure the quality of workpieces and the efficiency of machining. However, various factors in the machining process can cause large variations in the monitoring signals, making it difficult to accurately predict tool wear values. To solve this, a tool wear prediction method based on domain adversarial adaptation and squeeze-and-excitation channel attention multiscale convolutional long short-term memory network (SE-DAAMSCLSTM) is proposed. A feature extractor combining multiscale convolution and channel attention with the introduction of domain adversarial mechanism was constructed to extract domain-independent multiscale spatiotemporal features that characterize tool wear, thus enabling accurate prediction of tool wear values. By validating the model on milling datasets and comparing it with conventional prediction methods, the results show that the model enables accurate prediction with variation in tool monitoring signals, demonstrating the superiority of the method in predicting tool wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.