Abstract

A naive Bayes classifier method for tool condition monitoring is described. End-milling tests were performed at different spindle speeds and the cutting force was measured using a table-mounted dynamometer. The effect of tool wear on force features in the time and frequency domains was evaluated and used for training the classifier. The amount of tool wear was predicted using the naive Bayes classifier method. Two cases are presented. First, the tool wear is divided into discrete states based on the amount of flank wear and the probability of the tool wear being in any state is updated using force data. Second, a continuous case is considered and the probability density function of the tool flank wear width is updated. The results are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.