Abstract
Recently, PcBN tooling have been successfully introduced in machining Ni-based superalloys, yet our knowledge of involved wear mechanisms remains limited. In this study, an in-depth investigation of PcBN tool degradation and related wear mechanisms when machining Inconel 718 was performed. Diffusional dissolution of cBN is an active wear mechanism. At high cutting speed oxidation of cBN becomes equally important. Apart from degradation, tool protection phenomena were also discovered. Oxidation of Inconel 718 resulted in formation of γ-Al2O3 and (Al,Cr,Ti)3O4 spinel that were deposited on the tool rake. Also on the rake, formation of (Ti,Nb,Cr)N takes place due to cBN-workpiece interaction. This creates a sandwich tool protection layer forming continuously as tool wear progresses. Such in operando protection enabled counterbalancing tool wear mechanisms and achieved high performance of PcBN in machining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.