Abstract

Aluminum silicon (Al/Si) alloy, a metal matrix composite (MMC), is widely used in various industrial sectors, such as transportation, domestic equipment, aerospace, military, and construction. Al/Si alloy is a matrix composite reinforced with aluminum nitride (AlN) particle and transformed into a new-generation material for automotive and aerospace applications. AlN material is an advanced material characterized by light weight, high strength, and high hardness and stiffness, which makes it suitable for various future applications. However, its high ceramic particle reinforcement and the irregular nature of these particles along the matrix material make it a low density material. This low density is the main cause of problems during machining of this material. This paper studies tool wear in milling AlSi/AlN metal matrix composite by using an uncoated carbide cutting tool. The volume of AlN reinforced particle was 10%. The milling process was carried out under dry cutting conditions. The uncoated carbide insert parameters used were the following: cutting speed of 230 m/min to 370 m/min, feed rate of 0.4, 0.6, and 0.8 mm/tooth, and a corresponding depth of cut (DOC) of 0.3, 0.4, and 0.5 mm, respectively. Sometech SV-35 video microscope system was used for tool wear measurements. Results revealed that tool wear increases at 230 m/min cutting speed, 0.4 mm/tooth feed rate, and 0.3 mm depth of cut. The medium cutting speed, specifically the 300 m/min cutting speed, 0.4 mm/tooth feed rate, and 0.5 mm DOC, is the optimum condition for a longer tool life (82.94 min) and is ideal for cutting AlSi/AlN MMCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.