Abstract
Tool wear condition monitoring is an important component of mechanical processing automation, and accurately identifying the wear status of tools can improve processing quality and production efficiency. This paper studied a new deep learning model, to identify the wear status of tools. The force signal was transformed into a two-dimensional image using continuous wavelet transform (CWT), short-time Fourier transform (STFT), and Gramian angular summation field (GASF) methods. The generated images were then fed into the proposed convolutional neural network (CNN) model for further analysis. The calculation results show that the accuracy of tool wear state recognition proposed in this paper was above 90%, which was higher than the accuracy of AlexNet, ResNet, and other models. The accuracy of the images generated using the CWT method and identified with the CNN model was the highest, which is attributed to the fact that the CWT method can extract local features of an image and is less affected by noise. Comparing the precision and recall values of the model, it was verified that the image obtained by the CWT method had the highest accuracy in identifying tool wear state. These results demonstrate the potential advantages of using a force signal transformed into a two-dimensional image for tool wear state recognition and of applying CNN models in this area. They also indicate the wide application prospects of this method in industrial production.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.