Abstract

Machining of hard and brittle materials is inherently involved with tool wear, which influences the dimensional and form accuracy of the machined product. Ultrasonic-assisted machining process is suitable for hard-to-cut materials such as ceramics, glass, and metal matrix composites, etc. In the current study, the mechanism of tool wear is investigated during ultrasonic-assisted milling of soda-lime glass as one of hard and brittle materials. Ultrasonic-Assisted Milling (UAM) combines the material removal mechanism of grinding and the milling kinematics with ultrasonic assistance. The effect of different process parameters, i.e. feed rate, depth of cut, cutting fluid, and ultrasonic vibration assistance on the tool wear behavior are investigated. Form accuracy of the machined slots is also investigated. The results showed that UAM produces less tool wear than conventional milling (CM). However, CM gives less error in the slot dimensions than UAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call