Abstract

Mechanical micromachining has become a leading approach to fabricating complex three-dimensional microscale features and miniature devices on a broad range of materials. To satisfy the accuracy and productivity demands of various micromachining applications, the tool-tip dynamics, i.e., the dynamic behavior of the tool-ultra high-speed spindle assembly as reflected at the cutting edges of a microtool, should be well-understood. However, existing techniques for predicting tool-tip dynamics pose strict limitations in frequency bandwidth and do not capture the effect of the spindle speed on tool-tip dynamics. In addition, those techniques cannot be applied broadly to predict tool tip dynamics for a myriad of microtool geometries. This paper presents a systematic approach to predicting the tool-tip dynamics accurately in micromachining when using ultra-high-speed (UHS) spindles and for arbitrary microtool geometries. The speed-dependent dynamics of the UHS spindle are obtained using an experimental approach. The dynamics of microtools are obtained analytically using the spectral Tchebychev technique, such that any microtool geometry can be modeled accurately and does not require new testing. The tool-tip dynamics are then predicted by combining (coupling) the spindle and microtool dynamics using a novel modal-Tchebychev domain coupling technique. This technique enabled accurate coupling/decoupling of substructure dynamics within a broad frequency bandwidth (up to 15 kHz) and at different spindle speeds (up to 120,000 rpm). Furthermore, an empirical model for the mode-splitting effect is derived to capture the effect of spindle speeds on tool-tip dynamics. The overall approach is demonstrated and experimentally validated on a UHS spindle with microtool blanks and micro endmills at operational speeds. We conclude that the presented methodology can be used to determine the tool-tip dynamics accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.