Abstract

The spatial and temporal distribution of tool temperature in drilling of commercially pure titanium is studied using the inverse heat transfer method. The chisel and cutting edges of a spiral point drill are treated as a series of elementary cutting tools. Using the oblique cutting analysis of the measured thrust force and torque, the forces and frictional heat generation on elementary cutting tools are calculated. Temperatures measured by thermocouples embedded on the drill flank face are used as the input for the inverse heat transfer analysis to calculate the heat partition factor between the drill and chip. The temperature distribution of the drill is solved by the finite element method and validated by experimental measurements with good agreement. For titanium drilling, the drill temperature is high. At 24.4 m/min and 73.2 m/min drill peripheral cutting speed, the peak temperature of the drill reaches 480°C and 1060°C, respectively, after 12.7 mm depth of drilling with 0.025 mm feed per cutting tooth. The steady increase of drill temperature versus drilling time is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.