Abstract

A sensor fusion method for state estimation of a flexible industrial robot is presented. By measuring the acceleration at the end-effector, the accuracy of the arm angular position is improved significantly when these measurements are fused with motor angle observation. The problem is formulated in a Bayesian estimation framework and two solutions are proposed; one using the extended Kalman filter (EKF) and one using the particle filter (PF). The technique is verified on experiments on the ABB IRB4600 robot, where the accelerometer method is showing a significant better dynamic performance, even when model errors are present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.