Abstract

Planning tool paths on free-form surfaces is a widely discussed issue. However, satisfying all the requirements of blade machining using traditional path-planning methods remains a challenge. Herein, a new iso-parametric path-planning strategy, based on a novel parameterization method and combined with conformal transformation theory, is proposed. The presented strategy adapts to the curvature of blade surfaces, improving the kinematic performance of the machining process, reducing the complexity of multi-axis coordinated motion control, and improving the machining quality. A comparison between the proposed and three traditional methods is also discussed. The influence of the tool path on the kinematic performance of the machine tool is quantitatively examined based on the kinematic models of two different machines. Finally, the results of a deep-cutting milling experiment conducted to verify the improvement of the machining quality due to kinematic optimization are described. The proposed method provides a more reasonable path-planning approach for blade machining on a five-axis machine tool, which can significantly reduce the cost of blade machining, minimize the risks of blade failure, and enhance the large-scale automated production of blades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call