Abstract

This article presents a novel approach to generate optimized tool paths for free form surfaces that are commonly used in automotive, aerospace, biomedical, home appliance manufacturing and die/mold industries. The developed tool path optimization approach can handle various objectives under multiple constraints. Due to anisotropic geometry of free form surfaces, tool paths become one of the most critical factors for determining cutting forces. Here, the concept of force-minimal tool path generation is introduced and demonstrated for free form surfaces. Nowadays, process planning engineers must select the tool paths only from a set of ordinary tool paths available in CAM systems. These standard tool paths available in CAM systems are generated based on geometric computations only, not considering mechanics of processes, and most often these paths are away being optimum for free form surfaces. Here, a new methodology is introduced the first time for generating the tool paths based on process mechanics for globally minimizing the cutting forces for any given free form surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.