Abstract

With the increasing market demand for optical complex surface parts, the application of multi-axis ultra-precision single-point diamond turning is increasing. A tool path generation method is very important to decrease manufacturing time, enhance surface quality, and reduce cost. Compared with the tool path generation of the traditional multi-axis milling, that of the ultra-precision single-point diamond turning requires higher calculation accuracy and efficiency. This paper reviews the tool path generation of ultra-precision diamond turning, considering several key issues: cutter location (CL) points calculation, the topological form of tool path, interpolation mode, and G code optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.