Abstract

Industrial robots are widely used in various applications such as machining, painting, and welding. There is a pressing need for a fast and straightforward robot programming method, especially for surface-based tasks. At present, these tasks are time-consuming and expensive, and it requires an experienced and skilled operator to program the robot for a specific task. Hence, it is essential to automate the tool-path generation in order to eliminate the manual planning. This challenging research has attracted great attention from both industry and academia. In this paper, a tool-path generation method based on a mesh model is introduced. The bounding box tree and kd-tree are adopted in the algorithm to derive the tool path. In addition, the algorithm is integrated into an offline robot programming system offering a comprehensive solution for robot modeling, simulation, as well as tool-path generation. Finally, a milling experiment is performed by creating tool paths on the surface thereby demonstrating the effectiveness of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.