Abstract

Effective tool remaining useful life (RUL) prediction can greatly improve the quality of workpiece and reduce the cost of production. An online tool RUL prediction framework is constructed based on Bayesian inference and sensory signals. In this method, Pairs model is adopted to depict the tool degradation process during cutting process and Gaussian importance resampling (GIR) method is proposed to update model parameters iteratively. Therefore, the future tool wear status can be predicted and RUL can be estimated correspondingly. To testify the effectiveness of the proposed method, milling experiment was carried out and relative waveform features are extracted to depict the relationship between sensory signal and tool wear value. The analysis and comparison show that Gaussian importance resampling method can avoid the problem of particle degradation and impoverishment effectively so as to realize accurate RUL prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.