Abstract
Tool condition monitoring is in major focus nowadays in order to reduce production downtime due to breakdown maintenance, as timely detection of tool wear reduces the production cost. The paper provides an approach to monitor tool health for a CNC turning process using airborne acoustic emission and a PSO (Particle Swarm Optimization) optimized back-propagation neural network. Acoustic signals for good, average, and worn-out tools are recorded through a microphone. Back-propagation neural network are then trained and optimized using PSO algorithm to classify the tool health. PSO-optimized back-propagation neural network shows better performance for tool health classification as compared to simple back-propagation neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.