Abstract
Aiming at the problems of low learning efficiency, slow convergence speed, and low prediction accuracy of traditional data-driven model applied to tool cutting force prediction, a prediction method of tool cutting force based on ant lion optimizer (ALO) extreme learning machine (ELM) is proposed. ALO was used to improve the weights of input layer and hidden layer of ELM, so as to improve its prediction accuracy. The tool cutting force prediction models were established by using ALO-ELM, ELM, BP (backpropagation) neural network, and support vector machine, respectively. The experimental results show that the mean square error, mean absolute percentage error, and mean absolute error of ALO-ELM prediction model are 0.9911%, 0.0011%, and 1.0863%, respectively, which are far lower than the other three prediction models. ALO-ELM prediction model has stronger prediction accuracy and generalization ability, which can be effectively applied to the prediction of cutting force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.