Abstract
Cutting tools are required for day to day activities in manufacturing. Continuous machining operations lead tool to undergo wear. Worn out tools effect surface finish during machining. The dimensional accuracy of components is also compromised. Robust tool health is vital for better productivity. Hence, an online system condition monitoring of tools is the need of hour, promising reduction in maintenance cost with a greater productivity saving both time and money. This paper presents the classification performance of K-star algorithm. A set of statistical features extracted from vibration signals (good and faulty conditions) form the input to algorithm. In the present study, the K-star algorithm is able to achieve 78% classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.