Abstract

AbstractThe major difficulty faced in a machining process is predicting the failure of cutting tools and analyzing the stipulated time for tool replacement. The former and latter can be achieved through a monitoring system that surveys the effective condition. This present research work is focused on analyzing tool condition by adopting a vibration signature during the machining of a hybrid aluminum alloy composite using various coolants. The experiments were conducted employing various tools under optimum process parameters utilizing vegetable based cutting oil as a coolant. During the machining process, a vibration signature from the workpiece was acquired using an NI 6221 M series DAQ card allowing for various time domain features to be extracted. The arithmetic mean and skewness significantly increased for dull tools. Based on the extracted features, a decision making algorithm for tool condition monitoring system has been proposed. The result shows that the features extracted increased consecutively with an increase in flank wear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.