Abstract
The texture of a machined surface generated by a cutting tool, with geometrically well-defined cutting edges, carries essential information regarding the extent of tool wear. There is a strong relationship between the degree of wear of the cutting tool and the geometry imparted by the tool on to the workpiece surface. The monitoring of a tool’s condition in production environments can easily be accomplished by analyzing the surface texture and how it is altered by a cutting edge experiencing progressive wear and micro-fractures. This paper discusses our work which involves fractal analysis of the texture of surfaces that have been subjected to machining operations. Two characteristics of the texture, high directionality and self-affinity, are dealt with by extracting the fractal features from images of surfaces machined with tools with different levels of tool wear. The Hidden Markov Model is used to classify the various states of tool wear. In this paper, we show that fractal features are closely related to tool condition and HMM-based analysis provides reliable means of tool condition prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.