Abstract
The maximum mass of a neutron star is generally determined by the equation of state of the star material. In this study, we take into account dark matter particles, assumed to behave like fermions with a free parameter to account for the interaction strength among the particles, as a possible constituent of neutron stars. We find dark matter inside the star would soften the equation of state more strongly than that of hyperons, and reduce largely the maximum mass of the star. However, the neutron star maximum mass is sensitive to the particle mass of dark matter, and a very high neutron star mass larger than 2M⊙ could be achieved when the particle mass is small enough, being M⊙ the mass of the sun. Such kind of dark-matter-admixed neutron stars could explain the recent measurement of the Shapiro delay in the radio pulsar PSR J1614-2230, which yielded a neutron star mass of 1.97±0.04M⊙ that may be hardly reached when hyperons are considered only, as in the case of the microscopic Brueckner theory. Furthermore, in this particular case, we point out that the dark matter around a neutron star should also contribute to the mass measurement due to its pure gravitational effect. However, our numerically calculation illustrates that such contribution could be safely ignored because of the usual diluted dark matter environment assumed. We conclude that a very high mass measurement of about 2M⊙ requires a really stiff equation of state in neutron stars, and find a strong upper limit (⩽0.64GeV) for the particle mass of non-self-annihilating dark matter based on the present model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.