Abstract

Light emission from tunnel junctions are a potential photon source for nanophotonic applications. Surprisingly, the photons emitted can have energies exceeding the energy supplied to the electrons by the bias. Three mechanisms for generating these so-called overbias photons have been proposed, but the relationship between these mechanisms has not been clarified. In this work, we argue that multielectron processes provide the best framework for understanding overbias light emission in tunnel junctions. Experimentally, we demonstrate for the first time that the superlinear dependence of emission on conductance predicted by this theory is robust to the temperature of the tunnel junction, indicating that tunnel junctions are a promising candidate for electrically driven broadband photon sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.