Abstract

We have found a reorganization of tonotopic maps (based on neuron response thresholds) in primary auditory cortex of the adult chinchilla after amikacin-induced basal cochlear lesions. We find an over-representation of a frequency that corresponds to the border area of the cochlear lesion. The reorganization observed is similar in extent to that previously seen in a developmental model. The properties of neurons within the over-represented area were investigated in order to determine whether their responses originated from a common input (an indication of true plasticity) or represented only the result of truncating the activity of the sensory epithelium ("pseudo-plasticity"). Some aspects of our data fit with a true plasticity model and indicate the potential for the deafferented cortex of the mature cortex to regain connections with the surviving sensory epithelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call