Abstract

ObjectiveObese children demonstrate less activation in prefrontal regions associated with self-control and inhibition when presented with food cues and advertisements. The current study evaluates the differences between obese and healthy weight children in resting-state functional connectivity to these brain regions.Design and MethodsSeed regions in bilateral middle frontal gyri were chosen based on previous task-based analysis showing differences between obese and healthy weight children’s responses to food-associated stimuli. Functional connectivity to these seed regions was measured in resting-state scans collected in obese and lean children undergoing fMRI.ResultsObese children exhibited greater resting-state functional connectivity than healthy weight children between the left middle frontal gyrus and reward-related regions in the left ventromedial prefrontal cortex, as well as the left lateral OFC.ConclusionPreviously published results demonstrate that obese children exhibit less activity in brain regions associated with self-control when viewing motivationally salient food advertisements. Here we show that obese children also have tonically greater input to these self-control regions from reward neurocircuitry. The greater functional connectivity between reward and self-control regions, in conjunction with weaker activation of self-control neurocircuitry, may render these children more susceptible to food advertisements, placing them at elevated risk for over-feeding and obesity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.