Abstract

Light chain receptor editing is an important mechanism that prevents B cell self-reactivity. We have previously shown that tonic signaling through the BCR represses RAG expression at the immature B cell stage, and that initiation of light chain rearrangements occurs in the absence of these tonic signals in an in vitro model of B cell development. To further test our hypothesis we studied the effect of itpkb deficiency ( itpkb −/− mice) or Raf hyper-activation ( Raf-CAAX transgenic mice), two mutations that enhance BCR signaling, on receptor editing in an in vivo model. This model relies on transferring bone marrow from wild-type or mutant mice into mice expressing an anti-kappa light chain transgene. The anti-kappa transgene induces receptor editing of all kappa light chain expressing B cells, leading to a high frequency of lambda light chain expressing B cells. Anti-κ transgenic recipients of bone marrow from itpkb −/− or Raf-CAAX mice showed lower levels of editing to λ light chain than did non-transgenic control recipients. These results provide evidence in an in vivo model that enhanced BCR signaling at the immature B cell stage of development suppresses light chain receptor editing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.