Abstract

The gravity receptor system of crickets Gryllus bimaculatus is composed of antennal, cercal and leg subsystems. The cercal gravity receptors are the club-shaped sensilla. Each of these subsystems elicits compensatory head movements during passive roll. The extent of compensatory head movements depends on the strength of the gravitational stimulus applied to the leg subsystem. Amputation of 2 legs never causes a decrease in reflex amplitude. Unilateral amputation of 1 to 3 legs always induces a roll movement of the head to the intact body side. Therefore, the leg gravity receptor system exerts a modulatory and tonic effect on the neck muscles. The gravity receptors of 1 cercus or 1 antenna only elicit compensatory head movements. They exert no tonic effect on the neck muscles. The results are discussed with respect to (i) the proposed connectivity of the cercus-neck muscle pathway, (ii) mutual inhibitory interactions between the sensory pathways originating in the leg gravity receptors, and (iii) the influence of non-gravitationally induced excitation on the occurrence of compensatory head movements during passive roll of the crickets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.