Abstract

Vascular hyperpermeability resulting from distortion of endothelial junctions is associated with a number of cardiovascular diseases. Endothelial tight junction regulates the paracellular permeability of macromolecules, a function of Human Umbilical Vein Endothelial Cells (HUVEC) monolayers that can be regulated by oxidized Low-density Lipoprotein (ox-LDL). However, the understanding of drug regulation of vascular hyperpermeability is so far limited. This study thus aimed to investigate the role of Tongxinluo (TXL) in the maintenance of the vascular endothelial paracellular permeability. Here, changes in permeability were determined by measuring the paracellular flux of FITC-dextran 40000 (FD40), while protein expression and intercellular distribution were examined by western blot and immunofluorescence assay, respectively. We found that TXL alleviated the ox-LDL-induced increase in flux of FD40 and then reduced the hyperpermeability. Moreover, ox-LDL-induced disruptions of ZO-1, occludin, and claudin1 were also restored. This is via the activation of ERK1/2 in the vascular endothelial cells. Our results provide insights into the molecular mechanism by which TXL alleviates ox-LDL-induced hyperpermeability and provide the basis for further investigations of TXL as regulators of vascular barrier function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.