Abstract

The intrinsic and extrinsic tongue muscles manipulate the position and shape of the tongue and are activated during many oral and respiratory behaviors. In the present study, in 6-mo-old Fischer 344 rats, we examined mechanical and fatigue properties of tongue muscles in relation to their fiber type composition. In an ex vivo preparation, isometric force and fatigue was assessed by direct muscle stimulation. Tongue muscles were frozen in melting isopentane and transverse sections cut at 10 µm. In hematoxylin-eosin (H&E)-stained muscle sections, the relative fractions of muscle versus extracellular matrix were determined. Muscle fibers were classified as type I, IIa and IIx, and/or IIb based on immunoreactivity to specific myosin heavy chain isoform antibodies. Cross-sectional areas (CSAs) and proportions of different fiber types were used to calculate their relative contribution to total muscle CSAs. We found that the superior and inferior longitudinal intrinsic muscles (4.4 N/cm2) and genioglossus muscle (3.0 N/cm2) generated the greatest maximum isometric force compared with the transversalis muscle (0.9 N/cm2). The longitudinal muscles and the transversalis muscle displayed greater fatigue during repetitive stimulation consistent with the greater relative contribution of type IIx and/or IIb fibers. By contrast, the genioglossus, comprising a higher proportion of type I and IIa fibers, was more fatigue resistant. This study advances our understanding of the force, fatigue, and fiber type-specific properties of individual tongue musculature. The assessments and approach provide a readily accessible muscular readout for scenarios where motor control dysfunction or tongue weakness is evident.NEW & NOTEWORTHY For the individual tongue muscles, relatively little quantification of uniaxial force, fatigue, and fiber type-specific properties has been documented. Here, we assessed uniaxial-specific force generation, fatigability, and muscle fiber type-specific properties in the superior and inferior longitudinal muscles, the transversalis, and the genioglossus in Fischer 344 rats. The longitudinal muscles produced the greatest isometric tetanic-specific forces. The genioglossus was more fatigue resistant and comprised higher proportions of I and IIa fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call