Abstract
Ethnopharmacological relevanceTong-Qiao-Huo-Xue Decoction (TQHXD) is a traditional classic Chinese Medicinal Formula (CMF) used for clinical treatment of ischemic stroke. TQHXD leads to improvement in the symptoms of the acute period of cerebral infarction and recovery period after stroke. Our previous studies also showed that TQHXD produced a significant protective effect on the brain after cerebral ischemia-reperfusion (I/R) injury. It is reported that autophagy is closely related to ischemic brain injury; however, the functional contribution of TQHXD to brain microvascular endothelial cell (BMEC) autophagy and its underlying mechanism remains unclear. Aim of the studyThe purpose of this study was to investigate the effects and mechanism of TQHXD in inhibiting cerebral ischemia-induced endothelial autophagy. Materials and methodsThe high-performance liquid chromatography (HPLC) fingerprint of the chemical constituents from TQHXD was established for the quality control, and the Longa method was used to evaluate the efficacy of TQHXD in rats with middle cerebral artery occlusion (MCAO). The expression of LC3 was determined by immunofluorescence double staining. To evaluate the protective effects of TQHXD-containing cerebrospinal fluid (CSF) on BMECs injured by oxygen–glucose deprivation and reperfusion, cell survival rate was determined using the CCK-8 assay and cell apoptosis was determined by fluorescein isothiocyanate (FITC)-Annexin V/PI. Autophagy was detected using transmission electron microscopy. ResultsThe results showed that TQHXD-CSF significantly ameliorated oxygen-glucose deprivation/reperfusion (OGD/R)-induced injury in BMECs. Confocal microscopy and Western blot results showed that TQHXD-CSF reduced autophagy-related protein expression and autophagosome number. The results of the western blotting indicated that TQHXD-CSF caused a marked increase in the phosphorylation of protein kinase B and phosphoinsotide-3 kinase (Akt/p-Akt and PI3K/p-PI3K, respectively) and their expression levels were down-regulated after treatment with pathway inhibitor, ZSTK474. Furthermore, in a MCAO model in rats, TQHXD markedly increased p-PI3K, p-Akt and p-mTOR, whereas the autophagy related proteins decreased. ConclusionsTaken together, these findings demonstrate that TQHXD protects against ischemic insult by inhibiting autophagy through the regulation of the PI3K/Akt/mammalian target of rapamycin (mTOR) pathway and that TQHXD may have therapeutic value for protecting BMECs from cerebral ischemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Ethnopharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.