Abstract
The TonB system is required for the active transport of iron compounds across the outer membrane in Gram-negative bacteria. Our previous data indicated that three TonB systems act coordinately to contribute to the motility of Aeromonas hydrophila NJ-35. In this study, we found that flagellum biogenesis was defective in the ΔtonB123 mutant. Subcellular localization indicated that the flagellin subunits FlaA and FlaB were trapped in the cytoplasm of ΔtonB123 mutant with reduced molecular mass. Overexpression of FlaA or FlaB in the ΔtonB123 mutant was unable to restore the secretion of flagellin subunits. Further investigation demonstrated that flagellins in the ΔtonB123 mutant showed a weak affinity for the flagellin-specific chaperone FliS, which is necessary for the export of flagellins. Deglycosylation analysis indicated that flagellins in the cytoplasm of the ΔtonB123 mutant were almost nonglycosylated. Our data suggested that disruption of tonB123 impairs the formation of flagella by inhibiting flagellin glycosylation and decreasing the binding affinity of flagellin for the chaperone FliS. Taken together, our findings indicate a new role of the TonB system in flagellar biogenesis in A. hydrophila.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.