Abstract

Pore-scale numerical models of the porous volumetric solar receiver are established in this paper. By using the X-ray computed tomography and the imaging processing techniques, models of porous media with different geometrical parameters are reconstructed. The conjugate heat transfer process in the porous volumetric solar receiver is solved based on the direct pore-scale numerical simulation. The turbulent effect of fluid flow inside porous geometry is considered by the Shear-Stress Transport k-ω model and the absorbed solar energy is simulated by following the Beer's law. The results present that the inlet velocity and the geometrical parameters influence the thermal performance of the porous volumetric solar receiver. Larger inlet velocity tends to enhance the convective heat transfer between fluid and solid phases meanwhile decreases noticeably the overall temperature. Receiver with larger porosity is preferred because it limits the reflection losses. The Nusselt number increases as the porosity becomes larger. As a result, the general correlation of Nusselt number for the porous volumetric solar receiver is derived as a function of porosity and Reynolds number. This correlation is applicable with the porosity ranging from 0.74 to 0.89 and the pore Reynolds number ranging from 3 to 233.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.