Abstract
Abstract We consider the problem of determining the state of a finite dimensional quantum system by a finite set of different measurements in an optimal way. The measurements can either be projective von Neumann measurements or generalized measurements (POVMs). While optimal solutions for projective measurements are only known for prime power dimensions, based on numerical solutions it is conjectured that solutions for POVMs exist in any dimension. We support this conjecture by constructing explicit algebraic solutions in small dimensions d , in particular d = 12.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.