Abstract

Tailoring shape of metallic nanoparticles and alignment of nanoparticle assemblies allows controlling the properties of localized surface plasmon resonances, such as peak positions or near field‐coupling and enhancement [1]. Electron beam lithography is a versatile tool for nanoparticle manufacturing, but the technique usually suffers from imperfections, surface roughness, and limited spatial resolution, which leads to particle shapes that deviate from design objectives. Similar limitations apply to chemical synthesis, which leads to nanoparticle assemblies with size dispersion and geometry variations. Therefore, to exploit the full potential of plasmonics, full 3D characterization and simulation taking into account the imperfections of real structures become mandatory. Here we present two different tomography‐based approaches to understanding complex plasmonic nanoparticles created by electron beam lithography. In our first approach the precise 3D geometry of a particle dimer fabricated by means of electron beam lithography was reconstructed through electron tomography. This full 3D morphological information was used as an input for simulations of energy‐loss spectra and plasmon resonance maps (Figure 1). Here excellent agreement between measured EELS data and theory was found, bringing the comparison between EELS imaging and simulations to a quantitative and correlative level [2]. In our second approach we directly reconstruct particle plasmon fields from a tomographic tilt series of EELS spectrum images. While first approaches and demonstrations of plasmon field tomography were limited to very small particles [3–5] – small enough to neglect retardation – we lift this limitation with our approach making plasmon field tomography generally applicable to nanoparticles of all sizes [6]. Formulation EELS tomography as an inverse problem allows reconstructing the complete dyadic Green tensor for plasmonic particles, which is linked to the photonic local density of states (LDOS). Using this approach we are able to reconstruct the full 3D LDOS for a silver metallic nanoparticle (Figure 2). This work overcomes the need for geometrical assumptions or symmetry restrictions of the sample in simulations and generalizes plasmon field tomography to particles of all sizes, paving the way for detailed investigations of realistic and complex plasmonic nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.