Abstract

The magneto-static behaviour of soft magnetic composites (SMCs) is investigated using tomography based direct numerical simulation. The microgeometry crucially affects the magnetic properties of the composite since a geometry dependent demagnetizing field is established inside the composite, which lowers the magnetic permeability. We determine the magnetic field information inside the SMC using direct numerical simulation of the magnetic field based on high resolution micro-computed tomography data of the SMC's microstructure as well as artificially generated data made of statistically homogeneous systems of identical fully penetrable spheres and prolate spheroids. Quasi-static electromagnetic behaviour and linear material response are assumed. The 3D magnetostatic Maxwell equations are solved using Whitney finite elements. Simulations show that clustering and percolation behaviour determine the demagnetizing factor of SMCs rather than the particle shape. The demagnetizing factor correlates with the slope of a 2-point probability function at its origin, which is related to the specific surface area of the SMC. Comparison with experimental results indicates that the relatively low permeability of SMCs cannot be explained by demagnetizing effects alone and suggests that the permeability of SMC particles has to be orders of magnitude smaller than the bulk permeability of the particle material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.