Abstract

An iterative algorithm for tomographic reconstruction of refractive-index fields from measured values of path integrals along rays which have been bent by refraction is presented. The behavior of the algorithm is studied by applying it to path length data obtained by computer simulation of experiments in which holographic or Mach-Zehnder interferograms of the field are recorded for several different viewing directions. A special form of the algorithm is also used to measure concentration profiles in the boundary layer formed at the cathode of an electrolytic cell containing ZnCl(2). The Appendix contains a discussion of series expansion techniques for reconstructing object fields from measured values of line integrals through the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.