Abstract
Image reconstruction in computed tomography can be treated as an inverse problem, namely, obtaining pixel values of a tomographic image from measured projections. However, a seriously degraded image with artifacts is produced when a certain part of the projections is inaccurate or missing. A novel method for simultaneously obtaining a reconstructed image and an estimated projection by solving an initial-value problem of differential equations is proposed. A system of differential equations is constructed on the basis of optimizing a cost function of unknown variables for an image and a projection. Three systems described by nonlinear differential equations are constructed, and the stability of a set of equilibria corresponding to an optimized solution for each system is proved by using the Lyapunov stability theorem. To validate the theoretical result given by the proposed method, metal artifact reduction was numerically performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Mathematical Problems in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.