Abstract

A new methodology that exploits the matrix completion (MC) paradigm is proposed to image weak and sparse scatterers in heavy noise conditions. The 2-D inverse problem, mathematically formulated under the first-order Born approximation, is addressed with a three-phase algorithm that consists of: 1) an initial estimation step where a preliminary reconstruction of the distribution of the contrast and the associated “confidence map” are computed by means of a Bayesian compressive sensing method; 2) a filtering step devoted to identify and discard the less reliable contrast coefficients; and 3) a final dielectric profile completion step aimed at recovering a faithful image of the whole scattering scenario by exploiting a customized MC procedure. Representative numerical results and comparisons with competitive state-of-the-art inversion techniques are reported and discussed to assess the accuracy, the robustness, and the numerical efficiency of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.