Abstract

Quantum reservoir processing offers an option to perform quantum tomography of input objects by postprocessing quantities, obtained from local measurements, from a quantum reservoir network that has interacted with the former. We develop a method to assess a tomographic completeness criterion for arbitrary quantum reservoir architectures. Furthermore, we propose a figure of merit that quantifies their robustness against imperfections. Measured quantities from the reservoir nodes correspond to effective observables acting on the input objects, and we provide a way to retrieve them. Finally, we present examples of quantum tomography for demonstration. Our general method offers guidance in optimizing implementations of quantum reservoir processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.