Abstract

Palpation is one of the most sensitive, effective diagnostic practices, motivating the quantitative and spatially resolved determination of soft tissue elasticity parameters by medical ultrasound or MRI. However, this so-called elastography often suffers from limited anatomical resolution due to noise and insufficient elastic deformation, currently precluding its use as a tomographic modality on its own. We here introduce an efficient way of processing wave images acquired by multifrequency magnetic resonance elastography (MMRE), which relies on wave number reconstruction at different harmonic frequencies followed by their amplitude-weighted averaging prior to inversion. This results in compound maps of wave speed, which reveal variations in tissue elasticity in a tomographic fashion, i.e. an unmasked, slice-wise display of anatomical details at pixel-wise resolution. The method is demonstrated using MMRE data from the literature including abdominal and pelvic organs such as the liver, spleen, uterus body and uterus cervix. Even in small regions with low wave amplitudes, such as nucleus pulposus and spinal cord, elastic parameters consistent with literature values were obtained. Overall, the proposed method provides a simple and noise-robust strategy of in-plane wave analysis of MMRE data, with a pixel-wise resolution producing superior detail to MRE direct inversion methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.